0 Pluspunkte 0 Minuspunkte

Wenn ich versuche ein Model mit der

loss.backward()

Methode zu trainieren bekomme ich den Fehler

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

Also habe ich den Parameter

retrain_graph=True

eingefügt aber bekomme jetzt einen anderen Fehler

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [512, 128]] is at version 2; expected version 1 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!

So sieht mein Trainingsloop aus

for epoch in range(initial_num_epochs):
    
    hidden = initial_model.init_hidden(initial_batch_size)

    for i in range(0, initial_training_input_data.size(0) - initial_batch_size, initial_batch_size):
        inputs = initial_training_input_data[i:i + initial_batch_size]
        targets = initial_training_target_data[i:i + initial_batch_size]

        outputs, hidden = initial_model(inputs, hidden)
        loss = initial_criterion(outputs, targets)
        
        initial_optimizer.zero_grad()
        
        #loss.backward()        
        loss.backward(retain_graph=True)
        
        initial_optimizer.step()
        

    print(f'Epoch [{epoch + 1}/{initial_num_epochs}], Loss: {loss.item():.4f}')

und so das Model

class TextLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers=1):
        super(TextLSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, h):
        embedded = self.embedding(x)
        output, h = self.lstm(embedded, h)
        output = self.fc(output[:, -1, :])
        return output, h

    def init_hidden(self, batch_size):
        return (torch.zeros(self.num_layers, batch_size, self.hidden_size),
                torch.zeros(self.num_layers, batch_size, self.hidden_size))

von  

1 Antwort

0 Pluspunkte 0 Minuspunkte

Erstelle eine Kopie der Variable "hidden" bevor du loss.backward aufrufst und setze es danach erneut.

for epoch in range(initial_num_epochs):
    
    hidden = initial_model.init_hidden(initial_batch_size)

    for i in range(0, initial_training_input_data.size(0) - initial_batch_size, initial_batch_size):
        inputs = initial_training_input_data[i:i + initial_batch_size]
        targets = initial_training_target_data[i:i + initial_batch_size]

        outputs, hidden = initial_model(inputs, hidden)
        
        hidden_copy = tuple(h.detach().clone() for h in hidden)
        
        loss = initial_criterion(outputs, targets)
        
        initial_optimizer.zero_grad()        
        loss.backward()        
        initial_optimizer.step()
        
        hidden = hidden_copy


    print(f'Epoch [{epoch + 1}/{initial_num_epochs}], Loss: {loss.item():.4f}')

von (884 Punkte)